Immobilization of convex bodies in $${\mathbb {R}}^n$$ R n

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely many solutions for p-biharmonic equation with general potential and concave-convex nonlinearity in RN$\mathbb{R}^{N}$

In this paper, we study the existence of multiple solutions to a class of p-biharmonic elliptic equations, pu – pu + V(x)|u|p–2u = λh1(x)|u|m–2u + h2(x)|u|q–2u, x ∈RN , where 1 0. By variational methods, we obtain the existence of infini...

متن کامل

Existence of a ground state solution for a class of singular elliptic problem in RN$\mathbb{R}^{N}$

when p = , |f (x,u)| ≤ c(|u|+ |u|q–),  < q≤ ∗ = N N– ,N ≥ , for the corresponding results onemay refer to Brézis [], Brézis and Nirenberg [], Bartsch andWillem [] and Capozzi, Fortunato and Palmieri []. Garcia and Alonso [] generalized Brézis, Nirenberg’s existence and nonexistence results to p-Laplace equation. Moreover, let us consider the following semilinear Schrödinger equation:

متن کامل

Existence of nontrivial solutions for a class of biharmonic equations with singular potential in RN$\mathbb{R}^{N}$

*Correspondence: [email protected] School of Mathematics and Physics, University of South China, Hengyang, P.R. China Abstract In this paper, we study a class of biharmonic equations with a singular potential inRN . Under appropriate assumptions on the nonlinearity, we establish some existence results via the Morse theory and variational methods. We significantly extend and complement some re...

متن کامل

Infinitely many solutions for a class of $p$-biharmonic‎ ‎equation in $mathbb{R}^N$

‎Using variational arguments‎, ‎we prove the existence of infinitely‎ ‎many solutions to a class of $p$-biharmonic equation in‎ ‎$mathbb{R}^N$‎. ‎The existence of‎ ‎nontrivial‎ ‎solution is established under a new‎ ‎set of hypotheses on the potential $V(x)$ and the weight functions‎ ‎$h_1(x)‎, ‎h_2(x)$‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry

سال: 2018

ISSN: 0047-2468,1420-8997

DOI: 10.1007/s00022-018-0458-7